
ASQT-20 Virtual Conference

Estimating the Costs of Testing

Microservices in an Agile Project

Harry M. Sneed

Technical University of Dresden

ZTP-Prentner Digital, Vienna, Austria

November, 2020

The Devil‘s Quadrant
(Sneed in SW-Mgmnt 1988)

ASQT-1 SNEED-1

Quality of Test

Calendar Time = Days

Quantity of Test

Effort = Tester Hours

- -

Productivity ==

Test Cases per

hour

% Errors detected No. Test Cases &

% Code Coverage

Explanation of the Devil‘s Quadrant

The Productivity of a project group is given for a particular period of time. It may grow from year to

year but hardly ever more than 15% per annum.

The Devil‘s Quadrant is based on a quadratic equation with four variables and one constant.

The constant is the Productivity. The four variables are:

➔ Quality,

➔ Quantity,

➔ Time,

➔ Effort.

Two of the four variables can be determined, the other two are dependent. Quality is a

multiplication factor ranging from a low bound of 0.2 to an upper bound of 1.8 for the highest

attainable quality.

If Time and Effort are given, then Quantity and Quality are derived from the relation of Time and

Effort to Productivity. It only remains to determine which functionality should be provided with what

quality. This is referred to as backwards planning.

If Quantity and Quality are given, then Time and Effort are derived from the relation of Quantity and

Quality to Productivity. This is the method used in algorithmic estimations. It is forward planning.

Effort = Quantity x Quality

Productivity
Time =

Effort

Persons ** 0.7

Quality =
Effort

Quantity/Productivity
Quantity = Effort x Productivity x (2 – Qual)

1

2

3

4

5

SNEED-2ASQT-2

Planning the Service Test

• Agile Service Testing is a backward planning process

• The extent of the test is determined by the time available

• Planners must first define the time and effort allowed for a single

sprint or new release

• Agile Scrum projects are governed by a release cycle of maximum 4

weeks [Beck01].

• From this the testers can deduce the amount of code they can test

in this time and to that cost.

• Every sprint should deliver a new release, i.e., a new microservice

with a test coverage of at least 90% branch = C1 coverage.

• If the goal is to produce a new microservice every 4 weeks, then two

weeks will be for design and coding and two weeks for testing.

• Of the two weeks for testing one week will be for unit testing and

one week for integration testing [Crispin&Gregory09]

• The challenge is to fit the amount of test cases to the time and cost

allowed

SNEED-3ASQT-3

Test Effort in an agile Projekt
SNEED-4ASQT-4

Adapting Service Size and Complexity

to the Time and Cost Limits

• Services delivered must fulfill the test goals within the time & cost

limits.

• The maximum size and complexity of a target service is determined

by the effort and time required to test it.

• If the effort is too great and the time too long,

the service size and complexity must be reduced according to the

Boehm equation [Boehm99]:

Effort = (Size * Complexity) / Productivity

• If the service is being developed new, it should be designed to

remain within these limits from the beginning.

• If the service is being cut out of existing code it should be cut so

that no single Service exceeds the size limit.

SNEED-5ASQT-5

service: DayofWeek

if (testcase = „DayofWeek_TC01"); // German

if (operation = "GetWeekDay");

if (request = "GetWeekDayInput");

assert in.P1-DATE = „12101977";

assert in.P2-LANGUAGE = “1“;

assert in.P3-ALIGNMENT = “L“;

endRequest ;

if (response = "GetWeekDayOutput");

assert out.P4-DAYNAME = „Mittwoch";

endResponse ;

endOperation;

endCase;

if (testcase = „DayofWeek_TC02");

if (operation = "GetWeekDay"); //French

if (request = "GetWeekDayInput");

assert in.P1-DATE = „12101977";

assert in.P2-LANGUAGE = “2“;

assert in.P3-ALIGNMENT = “L“;

endRequest ;

if (response = "GetWeekdayOutput");

assert out.P4- DAYNAME = “Mercredi";

endResponse ;

endOperation;

endCase;

if (testcase = „DayofWeek_TC03"); // Italian

if (operation = "GetWeekDay");

if (request = "GetWeekDayInput");

assert in.P1-DATE = „12101977";

assert in.P2-LANGUAGE = “3“;

assert in.P3-ALIGNMENT = “L“;

endRequest ;

if (response = "GetWeekdayOutput");

assert out.P4- DAYNAME = “Mercoldi";

endResponse ;

endOperation;

endCase;

if (testcase = „DayofWeek_TC04"); //English

if (operation = "GetWeekDay");

if (request = "GetWeekDayInput");

assert in.P1-DATE = „11312000";

assert in.P2-LANGUAGE = “4“;

assert in.P3-ALIGNMENT = “R“;

endRequest ;

if (response = "GetWeekdayOutput");

assert out.P4- DAYNAME = “Unknown";

endResponse ;

endOperation;

endCase;

end; // service DayofWeek

Test Cases for Calendar Service
SNEED-6ASQT-6

Detecting Errors in Service Testing
• It is not enough just to test random test cases with the hope of

taking a new path thru the service each time.

• The test must be measured as to what branches and paths are

actually traversed.

• A minimum test coverage must be defined for every service

tested.

For this experiment 7 Java microservices with varying sizes were

tested with 4 different coverage measurements:

• Statement coverage

• Branch coverage

• Path coverage

• Parameter coverage [Crispin&Gregory09]

Errors are detected primarily by comparing the results returned

with the expected results. If an actual result differs from an

expected result, the tester is expected to take a closer look at the

test case. If it turns out to be a real error the tester records and

weighs it.

SNEED-7ASQT-7

The Java services used for the benchmark test were:

1. a calendar conversion service

2. an order entry service

3. a savings-and-loan partner update service

4. a beauty salon billing service

5. a geometric form query service

6. a user authorization service

7. a bank mail service.

The calendar service had been converted from an earlier

Assembler date routine.

The order entry service was cut out of a former COBOL

application converted to Java.

The geometric service was converted from C++.

The other services were original Java services,

reengineered for wrapping.

Services were tested separately by mocking their

environment in a service testbed.

Reengineered Java Services SNEED-8ASQT-8

Testing SPL Modules in 1978
SNEED-9

Budapest Test Labor

ASQT-9

Source

Code
Assertion

Script

SPL

Compiler

Assertion

Compiler

Object

Code

Test Data

Tables

Test

Execution

Before & After

Images

Was instrumented to

trace execution paths

Data

Deviation

Report

Prüfstand compared the View of the Tester

with the View of the Developer

Every Time a Module was

exited the pre and post

conditions were compared

Developer

Tester

Parallel Development & Test

Compiler

Addresses

Data values are

assigned at Runtime

SNEED-10ASQT-10

Charging Test Services

The big Question was how should the testing service be charged.

Siemens was not about to pay by time. The German managers did not

trust the Hungarians.

• Sneed suggested that they pay for finding errors and increasing

their trust in the software.

• Errors reported is measurable, it can be expressed in absolute

numbers. The errors can also be weighted by severity.

• Trust is not so easy to measure. Ed Miller proposed using test

coverage in connection with the number of test cases tested and

the number of errors found.

• To this end the test laboratory charged Euro 150,- for each proven

error reported and Euro 40,- for each test case tested. Each test

case had to be a unique path through the code.

• The paths executed, the code coverage and the errors found were

documented and reported to the customer every month.

SNEED-11ASQT-11

Comp

Modul

es

Stmts Test

cases

Bran

ches

Cover

age

Defis Errors Test

Days

Test

Hours

A 6 4029 196 183 89% 138 5 130 780

B 37 7588 232 603 91% 130 22 162 972

K 71 40735 1064 2843 87.5% 868 143 380 2280

N 6 2847 101 140 94% 110 14 34 204

S 8 5682 147 792 95% 150 6 54 324

Total 128 60881 1544 4378 91.9% 1396 192 760 4560

Metrics of the SPL Module Test in 1978

SNEED-12

Test Productivity = 0.33 Test Cases per Hour or 3 Hours per Test Case

Test Efficiency = 0.0002 Errors per Hour or 24 Hours per Error

ASQT-12

Web Service

Port Port Port

Request Response

Test

Driver
WDSL

Requests

WDSL

Responses

Result

Validator

Data

Generator

WDSL

Schema

Validation

Report

ExceptionsInterface Structure

Assertion

Script

Assertion

Script
WDSL WDSL

Pre Conditions Post Conditions

Microservice Test Execution

SNEED-13ASQT-13

WSDL

Interface

Definition

Test Result

Validator

Test Data

Script

Test

Web

Service

Response

Microservice Response Validation

Exceptions

P4 Target = Range (10:20)

P4 Actual = 21

Assert out P4 = Range (10:20);

Assert out P5 = Set (“X“, “Y“, “Z“)

Assert out P6 = P1 + 7;

<Request>

<Input>Params</Input>

</Request>

<Params>

<P4>10</P4>

<P5>X</P5>

</Params>

Deviation

Report

SNEED-14ASQT-14

Service Opers Stmts
Logic

Branchs
Params FuncPt

Test

Paths

Tester

Hours

Calendar 3 473 31 38 12 15 8

OrderEntry 16 625 187 43 29 92 37

BauSparer 17 276 47 64 35 22 13

BeautySalon 24 429 72 54 18 33 21

Geometry 5 510 73 19 9 36 18

Authorize 27 573 265 19 22 130 65

MailService 48 3317 762 211 126 278 88

Total 140 6203 1437 448 251 606 250

Metrics of the Java Service Test in 2020
SNEED-15

Test Productivity = 0.41 Test Cases per Hour or 2.4 Hours per Test Case

ASQT-15

Experience with the SPL Test Labor
• In the first half year 128 modules with 60881

SPL statements passed through the test labor.

• 4378 code branches were tested with a
coverage of 89.7% by 1544 test cases.

• The average path had 39 SPL statements.

• 192 program errors were discovered via
dynamic analysis.

• 1396 design and code deficiencies were
discovered via static analysis.

• The costs of the quality assurance remained
below 2 Euro per statement. This was less
than 10% of the total development costs.

SNEED-16ASQT-16

Experience with the Java Service Test

• The most important conclusion is that a
microservice should not have more than 48
procedural test cases if it is to be tested within
one week’s time.

• The average path included 10.2 statements
i.e. per test case.

• To be able to fit into the schedule of an agile
test the service to be tested can not exceed
the size of 490 statements.

• Of the 7 Java microservices 2 had to be
refactored to be testable within a week –
Authorize and MailService.

• Java microservices should be designed or
reengineered to meet these criteria.

SNEED-17ASQT-17

• The length of an average Java path is only

¼ of that of an average SPL path.

• The effort to test a test case in SPL is

almost the same as that for a test case in

Java.

• The key to calculating test effort is the

number of paths and parameters to test.

• The key coverage metric is branch, i.e.

decision coverage. Parameter coverage

might be more appropriate for testing

services. This has to be investigated.

Interesting Observations
SNEED-18ASQT-18

• [Beck01] Beck, K. et al.: “Manifest for Agile Software

Development”, agilemanifesto.org/ iso.de, 2001

• [Boehm03] Boehm, B. / Turner, R.: „Balancing Agility

and Discipline – A Guide for the Perplexed“, Addison-

Wesley, Reading, Ma., 2003

• [Boehm99] Boehm, B. et al.: „Software Cost Estimation

with COCOMO-II“, Prentice-Hall, Upper Saddle River,

New Jersey, 1999

• [Crispin&Gregory09] Crispin, L. / Gregory, J.: „Agile

Testing – A practical Guide for Testers and agile

Teams“, Addison-Wesley-Longman, Amsterdam, 2009.

References
SNEED-19ASQT-19

ASQT-Keynote powered by

