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Simple sensors (e.g. RFID) can provide a 'binary’ information
e.g. window contact RFID sensor detects activity window open/window closed,
ADXL345 accelerometer ('freefall pin') can detect falls
In general <activity-X> sensor does not exist
® Sensor data must be interpreted
® Multiple sensor must be combined (sensor fusion)
® Several factors influence the sensor data
Activity is recognized from the sensor data with
® Signal processing
® Machine learning
® Reasoning (for context aware activity recognition)
'sensor node’ or 'smart sensor’
smart sensor = sensor chip 4+ data processing in a device
sensor node = sensor sends data to a remote station for processing

unibz
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How to recognize activities?
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How to recognize activities?

» With sensors (on-body, on-object, in the environment)

ECG sensor

Spirometer sensor

e 'g' Phone/PDA
drinking coffee, running misosscme——SLlo

® |nertial sensors

Wrist band

® Physiological sensors

Motion sensor

® | ocation sensors
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How to recognize activities?

» Activities are represented by typical signal patterns
J J\ J\t ;L \ /‘ h fk /ﬂ
_ \ \ U

VWY VY

Slow walk pattern

Fast walk pattern
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How to recognize activities?

» Recognition: comparison between template and sensor data
| WM o

sensor signal Fast walk recognized Slow walk recognized
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Sensor data: Time series

Time series
An ordered sequence of values of a variable at equally spaced time intervals. J

" M » Multiple sensor, multiple dimensions

] : si=(d"d? B ....d), fori=1,... k
sz\/\/\M/\M/ k denotes the number of sensors and d*
IsJ\/\/V\/\A/\/\/\/\/ multiple values at time t.

» Sampling rate

Time

unibz
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Sensor data: Time series

z Rol=

Rotation on X axis.
(tilted right or left)

Acceleration (m/s”~2)

Rotation on ¥ axis.
(tilted up or down)

Examplary 3D acceleration time series.
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Activity Recognition Chain (ARC)

» A standard set of steps that is typically followed in activity recognition?:

Sensors Raw data p i i Feature Extraction Classification
D = (dy,...d,)’ D' = (dj,...d})’ W= {wi,...wn} = (a},.2}) P; (yXi.0)
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1Bulling, A., Blanke, U., & Schiele, B. (2014). A tutorial on human activity recognition using body-wor“mlf

inertial sensors. ACM Computing Surveys, 46(3), 1-33. o «F = T 9ae
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Recognition System Characteristics

. Offline
Execution
Online
" Continuous
Recognition
Isolated

Taxonomy of Bulling, A., Blanke, U., & Schiele, B. (2014). A tutorial on human activity recognition UHFEE

The system records sensor data first. The recognition is
performed afterwards. Mostly used in non-interactive
applications.

The systems acquires data and process it on the fly to
infer activities. Mostly used in interactive applications.

The system detects activities in streaming data. It im-
plements stream segmentation and classification.

The system assumes that the sensor stream is already seg-
mented. It only classifies sensor data into activity classes.

body-worn inertial sensors. ACM Computing Surveys, 46(3), 1-33.
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The Sport of Climbing

» Becoming increasingly popular competitive sport
and recreational activity.

> There is a need for application:
® Climbing skill assessment
e.g. speed, stability, power, endurance, control
® Usage analytics for climbing gym operators
e.g. popularity of a route, number of falls

unibz
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Sport Climbing Activities (state-of-the-art)

activities
» gripping a hold [Ladha et al, Boulanger et al]

» immobility, traction, postural regulation [Boulanger et al|
» fall detection [Tonoli et al’l5, Tonoli et al’19]

» resting, shaking arms for relief, chalking hands, clipping the rope, pulling the rope

performance indicators

» power, control, stability, speed [Ladha et all
» endurance [Pansiot et al]

» fluency [Seifert et al, Sibella et al]

» exploratory and performatory movement ratio [Boulanger et al]
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Data Recording

Smart quickdraw - a

quickdraw equipped with a
3-axial accelerometer.

Marina Andric (unibz)

Climber 3

\/ Attached
sensor
Belayer

Data collection setup
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Data Recording

Acceleraton [g]

0 100 200 300
Time

3-axial acceleration signal
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Data Recording

» Activities: falling

Fall

3
c
(o]
5
o
]
\ <
0 100 Time 200 300
3-axial acceleration signal
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Data Recording

» Activities: falling,

Marina Andric (unibz)

rope pulling

Rope pulling Fall Rope pulling
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3-axial acceleration signal
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Data Recording

» Activities: falling, rope pulling, lowering

Rope pulling Fall Rope pulling
8
6
— 4
2
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)
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o
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’ e . Time .
Lowering Lowering
3-axial acceleration signal
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Data Recording

» Activities: falling, rope pulling, lowering
Rope pulling Fall Rope pulling
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Dataset

» Data collection was performed in 2 climbing gyms, involving 2 participants, who climbed
along 4 different lines.

Summary of data collected on four different lines.

Dataset Climbs Climb time* (s) Rope pulling time* (s)

Salewa 5 1223 (+ 31.6) 10.4 (£ 2.6)
Vertikalel 4 145.5 (£ 46.1) 123 (= 1.7)
Vertikale2 4 2134 (£ 85.1) 124 (£ 1.1)
Vertikale3 4 147.7 (£ 47.1) 11.0 (£ 1.0)
Overall 17 155.2 (* 64.6) 11.5 (+ 2.0)

*Average activity duration with the standard deviation. —
unibz
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Overview of Rope Pulling Detection Procedure

TRAINING APPLICATION
‘ [ ;WMW"H 1 | ittt
GRAVITY GRAVITY
REMOVAL REMOVAL

DOWS

» Supervised machine learning

Requires ground truth annotation SLIDING
WINDOW

» Binary classification problem

SLIDING
WINDOW

FEATURES

rope pulling class (6% to 8% of samples)
EXTRACTION EXTRACTION

non-rope pulling class

CLASSIFIER

CLASSIFICATION / CLASSIFICATION | | LABELS
TEMPORAL | ppepicTions
SMOOTHING| .~ e
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Gravity Removal

» Accelerometer generates three time series, each combines linear acceleration (due to
body/object motion) and acceleration due to gravity.

» Low-pass filter [Bayat et all:

AX, AY, A4 are composed of high frequency (AC) and low frequency (DC) components.
Al = (1= B) x Al + Bx Abln—1]  1<n<|Alie{XV.2)

1 . . .
B = e 2X7xfX5 f_is cut-off frequency and s is sampling rate.

Aiclnl = Aln] — Abclnl 1< n<|Al i€ {XV.2}

unibz
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Gravity Removal

Original acceleration signal

(N
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Acceleraton [g]
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Time

Signal containing only body acceleration

fo = 0.25Hz S s
s = 52Hz 5
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Segmentation

» Finding segments of preprocessed data stream that are likely to contain information about
activities.

» Two general processing paradigms exist: i) explicit identification of start- and end-points
of semantically contiguous segments and ii) implicit segmentation through extraction of
windows and subsequent isolated classification regarding the patterns of interest.

» Sliding window technique
® Data is divided into segments of fixed lenght (windows), with no gaps between consecutive
windows.
® A degree of overlap between individual windows may be included.
® Window size typically ranges between 0.1s and 12.8s?

2Banos, O., Galvez, J.-M., Damas, M., Pomares, H., & Rojas, I. (2014). Window Size Impact in Humanunit;

Activity Recognition. -
Sensors, 14(4), 6474-6499.
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Segmentation

» Window labelling

class1

Groundtruth — |

Sensor channell

Sensor channel2

Sensor channel3

S|

| Label:class1

s, |

| Label:class2
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Feature Extraction

» Reduces the signals into features that are discriminative LW W
for the activities of interest.
» Trade-offs (minimize computation complexity, Lt

std .
maximize separation between classes, robustness)
» Some common features for acceleration data: s i

Time Domain Frequency Domain

Mathematical/Statistical Other Wavelet Fourier
Functions Functions Transformations Transformations

mean

Mean, Median Differences Coefficients Sum DC component
Variance, Std Deviation Angular Velocity Coefficients Sum
Min. Max. Range Zero-Crossings Dominant Frequency
RMS SMA Energy

Correlation, Cross-Correlation [— SVM Info. Entropy
Integration DSVM

2 unibz
Figo, D., Diniz, P. C., Ferreira, D. R., & Cardoso, J. M. P. (2010). Preprocessing techniques for context recognition from accelerometer data. Personal an G

Ubiquitous Computing, 14(7), 645-662.
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Feature Extraction

» We chose a feature space of 60 dimensions for rope pulling recognition task.
time-domain features: mean value, standard deviation, median, maximum, minimum,
Pearson correlation coefficients between pair of time series (on different axis), number of
peaks, kurtosis and skewness for x, y and z axes.
frequency domain features: the five largest frequency values and the amplitudes of these
values for x, y and z axes.

» A variety of methods for feature ranking and selection have been developed, e.g.
Sequential Forward Selection (SFS) (see for an introduction).

unibz
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Classification

Table II. Examples of Activity Recognition Using On-Body Sensors to lllustrate the Diversity of Methods and Activities to be Recognised (Evaluation metrics are

abbreviated: precision: “prec’, recall: ‘rec”, acccuracy: “acc”, 1- equal error rate: “EER")

G ok 0

®

10
1

12
13

[

Methods Activities #classes  participants Results Reference
MM daily situations o3 1 85.8% - 99.7% acc TClarkson et al. 2000]
Topic models daily routines 4 1 T7% prec, 66% rec [Huynh et al. 2008]

Joint boasting daily routines 4 1 88% prec, 90% rec [Blanke and Schiele 2009]

CRF/HMM daily home activities 7 1 96:/95% fvan Kasteren et al. 2008]

Decision tree selected daily ac 20 20 84% ace [Bao and Intille 2004]

AdaBoost+HMM selected daily ac 8 12 90% [Lester et al. 2006]

HMM eating and drinking am 5 2 87% acc [Amft et al. 2005]
gestures

SVM office activities from eye 6 8 76.1% prec, 70.5% rec  [Bulling et al. 2011]
movements

String reading from eye 2 s 88.9% prec, 72.3% rec/  [Bulling et al. 2012]

matching/SVM movements 87.7% prec, 87.9% rec

HMM/LDA assembly tasks 9 63% prec, 66% rec [Ward et al. 2006]

CRF composite and low-level 10and 6 6 75% EER and 88% [Blanke and Schiele 2010]
DIY adtivities EER

String matching bike maintenance tasks 5 3 82.7% [Stiefmeier et al. 2007]

naive Bayes/kNN car maintenance tasks 20 8 48% prec, T1% rec [Ogris et al. 2008]
(person dependent)

Joint Boosting car maintenance tasks 20 8 93% EER [Zinnen et al. 2009b]
(person independent)

kNN Tai Chi movements 3 4 85% ace [Kunze et al. 2006]

HMM American sign language 40 - around 95% [Starner et al. 1997

- walking styles 4 4 - [Lukowicz et al. 2006]

HMM selfstimulatory 8 1 68.57% [Westeyn et al. 2005]

behaviour in autism

1Bulling, A., Blanke, U., & Schiele, B. (2014). A tutorial on human activity recognition using body-wo

inertial sensors. ACM Computing Surveys, 46(3), 1-33.
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Activity Recognition Results

Classification performance metrics:

» Confusion matrix Predicted class
— TP+ TN Class = Yes Class = No
> ACCUraC_y — TP+FP+FN+TN Actual Class Class—Yes
» Precision = %3 Class = No
_ TP
» Recall = TPLFEN
unibz
o T = £ : oac
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Activity Recognition Results

» Results are based on stratified 10-fold cross-validation.

Method Precision Recall o8
Random forest (n=100) 0.85 0.87 .

CatBoost 0.57 0.92
AdaBoost 0.70 093
Logistic regression 0.72 0.78 £ ‘

Performance of rope pulling detection using
different classifiers on raw prediction results.

Predicted class

Normalized confusion matrix —_
unibz

Marina Andric (unibz) ASQT 2020 11 November 2020 20/25



Activity Recognition Results

Dataset GT TP J FP
Salewa 5 4 08 O
Vertikalel 4 4 092 0
Vertikale2 4 4 099 O
Vertikale3 4 4 09 0
Overall 17 16 093 0

Performance of random forest classifier.
GT : ground truth, TP : true positives,
: Jaccard index.

FP : false positives, JI

Marina Andric (unibz)

Annotation

0 100 200 O 100 200
Time(s)

Jaccard index of similarity for two

sets:
ANB
J(A, B) = ABB
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Conclusions

» Sensor signal to activity class mapping is identified at the design time. Can't displace
sensors, Can't change the way activities are done.

» A large body of data is typically required to develop an application suitable for practical
deployment.

» It is often worth applying both exhaustive and non-exhaustive evaluation methods (i.e.
leave-one-out cross-validation).

» To separate gravity component from acceleration may require sensor fusion approach.
(eg. )

» Find optimal sensor sampling rate for accelerometry based human activity recognition.
(e.g. as done in )

» Encouraged by first results we plan to further explore the potential for using smart
quickdraw for climbing applications i.e., climbing performance assessment and climbing
gym usage analytics. unibz
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Thank you for your attention

Questions?

(marina.andric@unibz.it)
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